THE COMPLEXING PROPERTIES OF CHIRAL CROWN ETHERS INCORPORATING 1,3:4,6-DI-O-METHYLENE-D-MANNITOL RESIDUES. A SECONDARY DIPOLE-INDUCED DIPOLE INTERACTION.

Dale A. Laidler and J. Fraser Stoddart

Department of Chemistry, The University, Sheffield S3 7HF

Chiral crown ethers constructed around binaphthol,² tartaric acid,³ and carbohydrates⁴ as sources of chirality have been shown to complex with RNH₃⁺ ions and, in some cases, to exhibit chiral recognition towards racemic salts. In addition, high stereoselectivity in the complexation of PhCH₂NH₃⁺ and PhCHMeNH₃⁺ ions by the diastereotopic faces of chiral asymmetric crown ethers incorporating methyl 4,6-0-benzylidene- α - \underline{p} -glucopyranoside residues has been uncovered. ^{4b,c} This observation has been ascribed ^{4c} tentatively to a secondary interaction of a dipole-induced dipole type between the 2-phenyl-1,3-dioxan ring in the crowns and the phenyl groups in the cations. These results suggested to us that the 22-crown-6 \underline{pp} -(1) and 20-crown-6 \underline{p} -(2) derivatives derived from 1,3:4,6-di-0-methylene- \underline{p} -mannitol⁵ \underline{p} -(3) might show interesting binding properties with RNH₃⁺ ions containing phenyl groups. Moreover, examination of CPK molecular models indicates that \underline{pp} -1 and \underline{p} -2 would not be too different topologically from the corresponding (*RR*)-bis(binaphtho)-22-crown-6 and (*R*)-binaphtho-20-crown-6 derivatives synthesized and investigated in considerable detail by Cram.

<u>pp-1</u>, m.p. 192-193°C, $[\alpha]_{\underline{p}}$ -107.6° (*a* 0.85, CHCl₃), was obtained⁶ (15%) after chromatography (CHCl₃) on Al₂O₃ of the products resulting from reaction between <u>p-3</u>, Ts(OCH₂CH₂)₂OTs, and Me₃COK in THF under reflux for 8 h. Condensation between <u>p-3</u> and Ts(OCH₂CH₂)₅OTs in the presence of NaH in Me₂SO at 50-55°C for 18 h afforded 34% of <u>p-2</u>, b.p. 207°C at 0.01 mm Hg, $[\alpha]_{\underline{p}}$ -55.4° (*c* 1.46, CHCl₃), ¹H n.m.r. data: δ (CD₂Cl₂) : 3.38 (2H, t, *J*=10.5 Hz, H-1a, 6a), 4.30 (2H, q, *J*=5.0, 10.5 Hz, H-1e,6e) and 4.58 and 4.98 (4H, AB system, *J*_{AB}=6.1 Hz, OCH₂O) after m.p.1.c. (Et₂0:MeOH, 95:5) on SiO₂ of the products isolated from the reaction mixture.

Whereas <u>DD-1</u> forms exceedingly weak complexes with $\text{RNH}_3^+ X^-$ salts in CDCl_3 , <u>D-2</u> binds⁷ reasonably strongly with SCN⁻ and ClO_L^- salts derived from MeNH_2 (<u>4</u>), Me_2 CHNH₂ (<u>5</u>), Me_3 CNH₂

DD-1

453

(<u>6</u>), $PhCH_2NH_2$ (<u>7</u>), (R) - and (S) - PhCHMeNH₂ (R) - and (S) - (<u>8</u>), (R) - PhCHCO₂MeNH₂ (R) - (<u>9</u>), and (R) - and (S) - PhCH₂CHCO₂MeNH₂ (R) - and (S) - (10). The association constants for complexing of <u>DD-1</u> and <u>D-2</u> with Me₃CNH⁺₃SCN⁻ in CDCl₃ were estimated⁸ to be <50 and 520 M⁻¹, respectively. In addition, CD_2Cl_2 solutions of <u>DD-1</u> were almost incapable of solubilising RNH₃⁺SCN⁻ and Clo_{L} saits whereas 1:1 complexes were formed readily between $\underline{Q}-\underline{2}$ and salts of $\underline{4}$ to $(S)-\underline{10}$ as indicated by the substantial changes in the ¹H n.m.r. spectra of the crown. The previously enantiotopic methylene protons in <u>7</u>.HClO_L become⁹ diastereotopic in the chiral complex as demonstrated by their appearance as an AB system (δ_A 4.20, δ_B 4.14, J_{AB} = 15 Hz). As the temperature of the CD_Cl_ solution is lowered, all signals exhibit line broadening and the line shape behaviour of the AB system for the OCH₂O protons is particularly significant. Below 0°C, the B part-which is assigned ¹⁰ to the axial protons — becomes very broad and eventually by -80 $^{\circ}$ C separates out into two signals of equal intensity centered on δ 4.74 and 4.45. The coalescence temperature associated with this spectral change is -55° C. The A part — which is assigned 10 to the equatorial protons — shows a similar kind of behaviour but with a lower coalescence temperature of -65° C and a smaller chemical shift difference (18 Hz) at -80°C. These spectral changes, which are both associated with a value for ΔG^{\dagger} of 10.5 kcal mol⁻¹, may be interpreted in terms of exchange of cations between the homotopic faces of <u>D-2</u>. The kinetic and thermodynamic data for this and other 1:1 complexes are summarized in the Table. Since the 20-membered ring in the crown cannot undergo ring inversion,¹¹ the ΔG_c^{\dagger} values can be equated with the free energies of activation $(\Delta \mathcal{G}_{d}^{\dagger})$ for dissociation of the complexes. Four observations 12 can be made: (i) Complexes involving MeNH $_3^+$ ions are the weakest of all. This difference could arise from the relative lack of shielding of the RNH_2^+ ion, and hence its availability for ion pairing with the anion when the alkyl group is small in a relatively accessible complex. (ii) Complexes involving ClO_4^- salts are stronger (0.8-1.8 kcal mol⁻¹) than those involving SCN salts. This difference probably reflects the fact that SCN ions are more efficient at "de-structuring" complexes than are Clo_{L} ions. (iii) The difference (0.5 kcal mol⁻¹) in ΔG_{d}^{\dagger} values for $\underline{P}=\underline{2}-(R)=\underline{10}$. HClO₄ and $\underline{P}=\underline{2}-(S)=\underline{10}$. HClO₄ indicates modest chiral recognition of (RS)-PhCH₂CHCO₂MeNH⁺₃ClO₄ in favour of the (S)-isomer by $\underline{P}=\underline{2}$ at low temperatures. (iv) Complexes involving cations which contain phenyl groups are stronger $(ca. 1 \text{ kcal mol}^{-1})$ than those involving cations which lack a phenyl group. This effect is evident in the more highly structured complexes involving $Cl0_h^-$ ions. We put forward the hypothesis that this enhanced binding finds its origin in a secondary interaction between the

	R	¹ H N.m.r. probes	^T ,°c ±3°	Δν ([°] C) , ± 2 Hz	k c s ⁻¹	$\Delta G_{c}^{\ddagger}, \div 0.3$ kcal mol ⁻¹
4.HSCN	Me	OCH_H_0	<-110			<8.2
<u>4</u> .нс10 ₄	Me	00H H 0	<-110			< 8.2
5.HSCN	CHMe ₂	och A^{H}_{B} o	- 95	22 (-100) [°]	49	8.9
5.HC10,	CHMe,	OCH A BOO	- 80	17(-90) ^d	38	9.7
<u>6.</u> HSCN	CMez	៰៚៱៝ឣ៓៰	<-110			< 8.2
6.HC10,	CMe	och ^H so	- 91	15(-100) ^e	33	9.2
<u>7</u> .HSCN	CH ₂ Ph	och $\mathcal{A}^{H}_{\mathbf{B}}$ o	- 90	54(-100) ^f , ^m	120	8.8
	CH_Ph	៰៚៝ឣ៳៓៰	- 65	18(-80) ^g	38	10.5
	L	осн _а Н _в о	- 55	64(-80) ^{h,m}	1 42	10.5
(R)-8.HSCN	CHMePh	0 <i>CH</i>	<- 90			<9 . 3
(S) - 8. HSCN	CHMePh	៰៚៸៝៝ឣ៓៰	<-100			< 8.8
<i>(S)</i> - <u>8</u> .HC10 <u>L</u>	CHMePh	oc# _ิ ิ н _в o	- 75	20(-90) ⁱ	44	9.9
		och A^{H}_{B} o	- 65	44(-90)	98	10.1
(R)- <u>9</u> .HC10 <u>L</u>	PhCHC0,Me	៰៚៝ឣ៳៓៰	<- 90			<9 . 3
(R) - 10.HC10	PhCH, CHCO, Me		- 72	32 (-90) ^k	71	9.9
(S)- <u>10</u> .HC104	PhCH ₂ CHCO ₂ Me	OCH _A H _B O	- 60	46 (-90) ⁷	102	10.4

Table. Temperature dependent ¹H n.m.r. spectral data and kinetic and thermodynamic parameters for the 1:1 complexes between RNH_3^+ salts and D- $\underline{2}^{\alpha}$

^aAll spectra were recorded in CD₂Cl₂ at 220 MHz on a Perkin-Elmer R34 spectrometer with Me₄Si as "lock" and internal standard. Abbreviations used are: T_c , coalescence temperature; Δv , frequency separation for the appropriate ¹H n.m.r. probe with the temperature at which it was measured indicated in parenthesis; k_c , exchange rate constant at T_c calculated from the expression $k_c = \pi \Delta v/2^{\frac{1}{2}}$ (1.0. Sutherland, Annu. Rep. NMR Spectrosc., 4, 71 (1971)); $\Delta G_c^{\frac{1}{2}}$, free energy of activation at T_c calculated from the Evring equation.

^b In all cases exchange of protons (indicated by italics) between two equally populated sites C and D is observed. If the sites that represent two time-averaged signals are designated CD, the spectral changes can all be described as $CD \rightarrow C_2$.

$^{c}\delta_{c}$ 4.84 and $^{\delta}D$ 4.74.	$^{d_{\delta}}$ c 4.73 and $^{\delta}$ D 4.65.	e_{δ} 4.71 and δ 4.64
f_{δ} 4.70 and δ 4.45	g_{δ} 4.73 and δ 4.94.	h_{δ} C 4.74 and δ D 4.45
i_{δ} 5.07 and δ 4.98	j_{δ} 4.67 and δ 4.47	k_{δ} 4.81 and δ_{D} 4.68
$^{l}\delta_{p}$ 4.86 and δ_{p} 4.65		

^{*m*}Note that the D signal is shifted to especially high field in these complexes. This suggests a shielding influence by the phenyl group in the cation upon one of the axial OCH₂O protons in $\underline{D}-\underline{2}$.

1,3-dioxan rings in $\underline{D}-\underline{2}$ and a phenyl group in the cation. In the idealized three-point binding model of a face-to-face complex between $\underline{D}-\underline{2}$ and a generalized RNH_3^+ ion of the type PhCHR¹NH₃⁺ (R¹ = H, Me, or CO₂Me), it is possible for the phenyl group to orient itself over one of the 1,3-dioxan rings of $\underline{D}-\underline{2}$ so as to meet the directional requirements for a dipoleinduced dipole interaction¹³ as shown in $\underline{D}-\underline{2}$ -PhCHR¹NH₃⁺. Support for this proposal comes from two observations in the low temperature ¹H n.m.r. spectra: (*i*) The chemical shift differences (Δv) for H_B are larger for $\underline{D}-\underline{2}-\underline{7}$.HX and $\underline{D}-\underline{2}-(S)-\underline{8}$.HClO₄ which contain a phenyl group, than they are for $\underline{D}-\underline{2}-\underline{5}$.HX and $\underline{D}-\underline{2}-\underline{6}$.HX where R is Me₂CH and Me₃C, respectively. Clearly, the anisotropy of a phenyl group is being sensed preferentially by the axial OCH₂O proton on one of the 1,3-dioxan rings. *(ii)* A signal which integrates for *one* proton emerges at high field between δ 2.50 and 3.00 in $\underline{D}-\underline{2}-\underline{7}$.HClO₄, $\underline{D}-\underline{2}-(S)-8$.HClO₄, and $\underline{D}-\underline{2}-(S)-9$.HClO₄ - but not in the corresponding SCN⁻ complexes - and it can be assigned to H-1a on the basis of the following evidence. When the tetradeuterio-20-crown-6 derivative $\underline{D}-\underline{2}-d_4$ was prepared in analogous fashion to that described for $\underline{D}-\underline{2}$ from $\underline{D}-[1,1,6,6-^2H_4]$ mannitol $\underline{D}-\underline{3}-d_4$ and Ts (OCH₂CH₂)₅OTs, and the low temperature spectra recorded, this signal was absent in these complexes. Thus, H-1a would appear to fall within the shielding zone of the phenyl group interacting with the 1,3-dioxan ring as shown in $\underline{D}-\underline{2}$ -PhCHR¹NH₃⁺. It is significant that this effect is absent in the less highly structured SCN⁻ complexes and also in the constitutionally different (one extra CH₂ group) PhCH₂CHCO₂MeNH₃⁺ClO₄⁻ complexes, $\underline{D}-\underline{2}-(R)-$ and $\underline{D}-\underline{2}-(S)-10$.HClO₄.

References and Footnotes

- 1. Address all correspondence to this author at the Corporate Laboratory, Imperial Chemical Industries Ltd., P.O. Box No. 11, The Heath, Runcorn, Cheshire WA7 4QE.
- (a) D.J. Cram and J.M. Cram, Acc. Chem. Res., <u>11</u>, 8 (1978); (b) E.P. Kyba, G.W. Gckel, F. de Jong, L.R. Sousa, M.G. Siegel, L. Kaplan, G.D.Y. Sogah and D.J. Cram, J.Org. Chem., <u>42</u>, 4173 (1977) and earlier parts in this series of papers and communications; (c) W.D. Curtis, R.M. King, J.F. Stoddart and G.H. Jones, J. Chem. Soc. Chem. Commun., 284 (1976).
- 3. J.-P. Behr and J.-M. Lehn, J. Chem. Soc. Chem. Commun., 143 (1978) and earlier communications in this series.
- 4. (a) W.D. Curtis, D.A. Laidler, J.F. Stoddart and G.H. Jones, *J. Chem. Soc.*, *Perkin Trans.* 1, 1756 (1977); (b) D.A. Laidler and J.F. Stoddart, *Carbohydr. Res.*, <u>55</u>, C1 (1977); (c) *J. Chem. Soc. Chem. Commun.*, 481 (1977); (d) W. Hain, R. Lehnert, H. Röttele and G. Schröder, *Tetrahedron Lett.*, 625 (1978).
- (a) W.T. Haskins, R.M. Hann and C.S. Hudson, J. Am. Chem. Soc., 65, 67 (1943); (b) R. Allerton and H.G. Fletcher, Jr., *ibid.*, <u>76</u>, 1957 (1954).
- 6. Both $\underline{DD-1}$ and $\underline{D-2}$ and all of the salts derived from the primary alkylamines 4 to (S)-8and the amino acid methyl esters (S)-9 and (R)- and (S)-10 gave satisfactory results (C and H analysis were within 0.3% of theory) for their elemental analyses. Molecular ions were obtained in the mass spectra of $\underline{DD-1}$ and $\underline{D-2}$ and both compounds were also synthesized by another route.
- 7. The binaphtho-20-crown-6 (11) also forms (ref.2a) stronger complexes than the bis(binaphtho)-22-crown-6 (1) with Me₃CNH₃SCN⁻ in CDCl₃. Somewhat surprisingly, however, the complexes formed by <u>DD-1</u> and <u>D-2</u> are less stable than those formed by I and II, respectively. Although more basic oxygens replace aryl ones in <u>DD-1</u> and <u>D-2</u> inspection of CPK space filling molecular models of the complexes indicates that the binding sites are less "compact" in <u>DD-1</u> and <u>D-2</u> than they are in I and II. This is a consequence of the stereo-chemical differences between the two systems.
- (a) J.M. Timko, R.C. Helgeson, M. Newcomb, G.W. Gokel and D.J. Cram, J.Am. Chem. Soc., <u>96</u>, 7097 (1974);
 (b) J.M. Timko, S.S. Moore, D.M. Walba, P.C. Hiberty and D.J. Cram, *ibid.*, <u>99</u>, 4207 (1977).
- 9. Similar behaviour was observed for <u>D-2-5</u>.HSCN and <u>D</u>-2-5.HCl04 where the previously enantiotopic methyl groups in <u>5</u>.HX become diastereotopic as demonstrated by the appearance of two overlapping doublets in the spectra of the chiral complexes.
- 10. (a) R.U. Lemieux and J. Howard, Canad. J. Chem., <u>41</u>, 393 (1963); (b) T.B. Grindley, J.F. Stoddart and W.A. Szarek, J. Chem. Soc., B, 172 (1969).
- 11. Compare with the situation discussed in ref. 4c for rigid 18-crown-6 derivatives.
- 12. These observations are made on the assumption that the free energies of the transition states for complexes dissociating are characterized largely by the nature of the uncomplexed crown and hence variations in ΔG_{d}^{T} values reflect differences in the ground state free energies of the complexes.
- 13. J.E. Anderson, Tetrahedron Lett., 4713 (1965).

(Received in UK 13 November 1978)